Minimax Solutions of the Dual Hamilton-jacobi Equation
نویسنده
چکیده
In the paper the existence and continuous dependence of a kind of minimax solution to the dual Hamilton-Jacobi equations is proved. The main difficulties which appear here are a special type of the boundary conditions and the transversality conditions which that solution must satisfy. That type of problems come from optimal control and game theory.
منابع مشابه
On Minimax and Idempotent Generalized Weak Solutions to the Hamilton–Jacobi Equation
This paper provides a direct equivalence proof for minimax solutions of A.I. Subbotin and generalized weak solutions in the sense of idempotent analysis. It is shown that the Hamilton-Jacobi equation Vt+H(t, x,DxV ) = 0 (with the Hamiltonian H(t, x, s) concave in s), considered in the context of minimax generalized solutions, is linear w.r.t. ⊕ = min and ̄ = +. This leads to a representation fo...
متن کاملExtended Applicability of the Symplectic Pontryagin Method
Abstract. The Symplectic Pontryagin method was introduced in a previous paper. This work shows that this method is applicable under less restrictive assumptions. Existence of solutions to the Symplectic Pontryagin scheme are shown to exist without the previous assumption on a bounded gradient of the discrete dual variable. The convergence proof uses the representation of solutions to a Hamilton...
متن کاملA double obstacle problem arising in differential game theory
A Hamilton-Jacobi equation involving a double obstacle problem is investigated. The link between this equation and the notion of dual solutions—introduced in [1, 2, 3] in the framework of differential games with lack of information—is established. As an application we characterize the convex hull of a function in the simplex as the unique solution of some nonlinear obstacle problem.
متن کاملStochastic nonlinear minimax dynamic games with noisy measurements
This note is concerned with nonlinear stochastic minimax dynamic games which are subject to noisy measurements. The minimizing players are control inputs while the maximizing players are square-integrable stochastic processes. The minimax dynamic game is formulated using an information state, which depends on the paths of the observed processes. The information state satisfies a partial differe...
متن کاملStochastic differential games with asymmetric information
We investigate a two-player zero-sum stochastic differential game in which the players have an asymmetric information on the random payoff. We prove that the game has a value and characterize this value in terms of dual solutions of some second order Hamilton-Jacobi equation. Key-words : stochastic differential game, asymmetric information, viscosity solution. A.M.S. classification : 49N70, 49L...
متن کامل